Closing Wed: HW 13.3 Closing next Tues: HW 13.4, 14.1
13.3 is the area between curve (see lecture notes from last Friday!)

### 13.4 More Integral Applications

In this section, we explore two more integral applications to business:

- Income flow
- Consumer/Supplier Surplus


## Income Flow

If total income from a continuous income stream has an annual rate of flow given by $r(t)$, then the total income in $k$ years is

$$
I(k)=\int_{0}^{k} r(t) d t
$$

This formula applies if income comes in

1. "spread out" (continuous) throughout the whole year, and
2. with an annual rate $r(t)$.

Example:

1. Constant continuous annual rate

$$
r(t)=4000 \quad \text { dollars } / \text { year }
$$

What is total income in the first 5 years?
2. Linearly increasing continuous rate $r(t)=3000+250 t$ dollars/year What is total income in the first 8 years?
3. Exponential continuous rate (most common, i.e. bank account and investments)

$$
r(t)=800 e^{0.05 t} \text { dollars/year }
$$

What is total income in the first 6 years?

Aside: In this last example, $\$ 800 /$ year is the initial rate at which income is coming in and it is increasing at $5 \%$ per year (spread out throughout the year).

Consumer/Supplier Surplus Recall:
Demand Curve: Relates price per item, $p$, to the number of items, $x$, consumers will buy at that price.
Supply Curve: Relates price per item, $p$, to the number of items, $x$, that manufacturers are willing to sell at that price.

## And remember:

The demand curve is always decreasing. (Price goes up, demand goes down). The supply curve is always increasing. (Price goes up, supply goes up).

Market equilibrium is the quantity and price at which supply and demand intersect. At this price, the amount produced and sold will be equal (no shortage and no surplus)


## Consumer Surplus

Idea: You go to the store to buy some new piece of technology. You go ready to spend $\$ 500$, but when you get to the store you find that it is on sale for $\$ 425$.

From your perspective:
You happily saved \$75.
From the store's perspective: They could have made $\$ 75$ more from you if they would have known how desperate you were for that new piece of technology.

We could say that you have a personal consumer surplus of $\$ 75$. If $\$ 425$ is the market equilibrium price, then your willingness to buy at $\$ 500$ means you are part of the demand curve that comes before the equilibrium.

And you can visualize this $\$ 75$ amount as the distance between the demand curve and the horizontal equilibrium line at $\$ 425$.


The sum of all moneys that some consumers are willing to pay over the equilibrium for a given product is called Consumer Surplus. It is given by the area of the region below:
$\int_{\text {Area }}^{\mathrm{p}}=$ Consumer Surplus
demand


If demand is given by $p=f(x)$ and equilibrium is at $(x, p)=\left(x_{1}, p_{1}\right)$, then

$$
\mathrm{CS}=\int_{0}^{x_{1}} f(x) d x-p_{1} x_{1}
$$

Example: If the demand curve is $p=5000-x^{2}$, and if market equilibrium is at $(x, p)=(60,1400)$ then find consumer surplus.

Producer (Supplier) Surplus
Idea: Assume a supplier produced and sold the same bit of technology from my earlier story. They had planned to sell it for $\$ 380$ at a different store and as a result had produced fewer quantities than most manufacturers (or you could say they were willing to sell for less than
 market equilibrium).

But it turned out that the equilibrium price is $\$ 425$ and they can sell for a $\$ 45$ surplus from what they had originally planned (or you could say they left \$45 per item "on the table").

The sum of all moneys for suppliers willing to sell for less than equilibrium for a given product is called Producer Surplus. It is given by the area of the region below:


If supply is given by $p=g(x)$ and equilibrium is at $(x, p)=\left(x_{1}, p_{1}\right)$, then

$$
\mathrm{PS}=p_{1} x_{1}-\int_{0}^{x_{1}} g(x) d x
$$

Example: If the supply curve is $p=2+0.5 x$, and if market equilibrium is at $(x, p)=(400,202)$ then find supplier surplus.

Example (Problems 7 and 11 from HW)
Given Demand: $p=\frac{48}{x+2}$
Supply: $\quad p=3+0.1 x$
Find consumer and producer surplus under pure competition (meaning at market equilibrium).

Step 1: Find market equilibrium.
Step 2: $C S=\int_{0}^{x_{1}} f(x) d x-p_{1} x_{1}$
Step 3: PS $=p_{1} x_{1}-\int_{0}^{x_{1}} g(x) d x$

